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Abstract. We show that a class of solutions of KdV can be used to modulate miscellaneous
wavepackets similarly to how the trigonometric functions are used in linear theory to perform
the same task.

The theory of Fourier transform is based on viewing miscellaneous functionsf (x, t) as
linear superpositions

∫
R[fs(λ) sin(λx−ω(λ)t)+fc(λ) cos(λx−ω(λ)t)] dλ of trigonometric

functions sin(λx − ω(λ)t) and cos(λx − ω(λ)t). It is often said that the trigonometric
functions linearly modulatef (x, t).

Among other things linear modulation is being used to construct localized in-space
solutions of linear partial differential equations, so-called wave-packets. Such solutions
find applications in electrodynamics, fluids and especially in quantum mechanics, where
the interplay between the concepts of a particle and a wave is of fundamental importance.
Yet the construction of wavepackets is severely limited by the requirement of linearity of
the corresponding partial differential equations. Should the equations become even mildly
nonlinear we can no longer construct exact wavepacket solutions. In such cases the best
that we can do is to construct wavepacket solutions of the linearized partial differential
equations and try to add a perturbation to accommodate the nonlinearities. Besides the fact
that a solution so obtained is only anapproximatesolution, the introduction of a perturbation
may also destroy space localization of the solution. It is only natural to ask if there could
exist a nonlinear analogue of linear modulation that would allow us to constructexact
wavepacket solutions for at least some nonlinear partial differential equations. The analogy
between the Fourier transform and the inverse scattering method when used as a tool for
solving the Cauchy problem for integrable equations, suggests that if any nonlinear partial
differential equations allow nonlinear modulation then the integrable equations are the most
likely candidates. Indeed, as it turns out, even the simplest representative of the integrable
equations, the KdV equation

ut + 6uux + uxxx = 0 lim
x→±∞ u(t, x) = 0 (1)

permits nonlinear modulation.
We start by looking at the spectral problem associated with a potentialu

−∂
2ψ

∂x2
− uψ = λ2ψ ψ(x, k) ∼ eikx x →+∞.

Let a(k) andb(k) be determined by the asymptotic behaviour ofψ(x, k) asx approaches
−∞

ψ(x, k) ∼ a(k)eikx − b(−k)e−ikx x →−∞.
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and r(k) = b(k)

a(k)
. The solutionu(t, x) of (1) is then obtained viau(t, x) = d

dxK(x, x),
whereK(x, y) is, in turn, the solution of an integral equationK(x, y) + F(x + y) +∫ +∞
x

K(x, z)F (y + x) dz = 0 with F(z) =∑N
j=1

ib(kj )
a′(kj )

eikj z + 1
2π

∫ +∞
−∞ r(k)eikz dk, [6, 12].

If r(k) ≡ 0 we obtain anN -soliton solution which already represents a nonlinear
superposition ofN solitons with each soliton considered as its elementary component.
Although each soliton can be viewed as somewhat of a particle, we cannot consider it to
be a wavepacket for it has no oscillations within it.

Let us now turn our attention to the solitonless case, i.e. the case whenF(z) =∫ +∞
−∞ r(k)eikz dk, r(−k) = r̄(k) is a superposition of linear harmonics eikz. The most

elementary potentials are obtained whenF(z) contains only two harmonics eiλz and e−iλz,
or more precisely, when we choose

r(k) = lim
ε→0


eiγ+pε+8i(λ+iε)3t |k − λ| < ε

e−iγ+pε+8i(−λ+iε)3t |k + λ| < ε

0 otherwise.

One can explicitly compute these elementary potentials by essentially repeating the steps
in derivation of the two-soliton solutions and, just like with the two-soliton solutions, these
potentials can be written up by taking a 2× 2 matrixA with entries

Anm = δnm + βne
8µ3

nt−(µn+µm)x

µn + µm
µ1 = iλ+ ε µ2 = −iλ+ ε β1 = 2εeiγ+2pε β2 = 2εe−iγ+2pε

and letting

u = 2 lim
ε→0

d2

dx2
ln detA = 8λ2 sin(8λ3t + 2λx − γ )

sin(8λ3t + 2λx − γ )− 2λ(12λ2t + x − p)

+8λ2

[
1− cos(8λ3t + 2λx − γ )

sin(8λ3t + 2λx − γ )− 2λ(12λ2t + x − p)
]2

. (2)

The graph of (2) is shown in figure 1. These solutions have been previously derived by
a number of authors but it is only in the last several years that their properties have attracted
more careful studies, for example [12–14, 17–19], where (2) are correspondingly referred to
as harmonic breathers or positons. Each harmonic breather is determined by three constants
λ, p andγ which we refer to correspondingly as the frequency, displacement and phase.

Figure 1. Snapshots of a single harmonic breather withγ = 0; λ = 1; p = −5 for the values
of t shown in the upper left corner.
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By analogy with solitons we define the nonlinear superposition ofN harmonic breathers
whose frequencies, displacements and phases are correspondingly given by sets3 =
(λ1, . . . , λN), P = (p1, . . . , pN) and0 = (γ1, . . . , γN) to be the potential generated by
taking

r(k) = lim
ε→0

N∑
j=1

[eiγj+pj εχ[λj−ε,λj+ε](k)+ e−iγj+pj εχ[−λj−ε,−λj+ε](k)]

where

χ[α,β](k) =
{

1 α < k < β

0 otherwise.

Again, the corresponding potential can be computed in essentially the same manner as
the 2N -soliton solution [12, 13] yielding

u = 2 lim
ε→0

d2

dx2
ln detA (3a)

whereA is a 2N × 2N matrix with entries

Anm = δnm + βne
8κ3
n t−(κn+κm)x

κn + κm (3b)

κ2q−1 = iλq + ε κ2q = −iλq + ε β2q−1 = 2εeiγq+2pqε β2q = 2εe−iγq+2pqε

(3c)

λq, ε > 0 for 16 q 6 N.
Formulae (3) describe the motion and interaction ofN harmonic breathers, whenN = 1

we recover (2). EachN -harmonic breather solution (3) is a meromorphic function with
generallyN real poles, although as shown in [12] for some values oft the number of real
poles may be less thanN . The behaviour of the poles and their interaction are described
in [12, 13, 17]. Away from the poles theN -harmonic breather solutions are oscillatory,

decaying to zero at infinity as O
(

1
|x|
)

as shown in [13]. The two-harmonic breather solution,

which is obtained by takingN = 2 in (3), can be written as [11, 12]

u(t, x) = 2
d2

dx2
`n(τ1τ2− q2) (4a)

where

τk = pk − 12λ2
kt − x −

sin(8λ3
kt + 2λkx − γk)

2λk
k = 1, 2 (4b)

and

q =
[

sin((4λ3
1t + λ1x − γ1/2)− (4λ3

2t + λ2x − γ2/2))

λ1− λ2

−sin((4λ3
1t + λ1x − γ1/2)+ (4λ3

2t + λ2x − γ2/2))

λ1+ λ2

]
. (4c)

Formulae (4) generally make sense only whenλ2 6= ±λ1 but for γ2 = γ1 + 2nπ the
concept of the superposition of two harmonic breathers can be naturally extended to the
caseλ2 = ±λ1 by taking the limit of (4) asλ2→ λ1. The answer turns out to be a single
harmonic breather solution withλ = λ1, γ = γ1 andp = p1p2

p1+(−1)np2
, [11, 12].
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Let us take a finite region� sufficiently far away from the poles of both harmonic
breathers. For simplicity we can choose� = {x, t ||x| 6 X, 0 6 t 6 T } and
|p1|, |p2|, |p| � X, T . Then in� the first and second harmonic breathers are equal to

4λk sin(8λ3
kt + 2λkx − γk)
pk

+O

(
1

pk

)
k = 1, 2 (4d)

i.e. up to the terms O(1/pk) they are oscillatory waves of amplitude 1/pk.
The nonlinear harmonic breather obtained as the result of their superposition is equal

in � to

4λ1 sin(8λ3
1t + 2λ1x − γ1)

p
+O

(
1

p

)
(4e)

i.e. the same oscillatory wave with amplitude 4λ/p = 4λ/p1 + (−1)n(4λ/p2). Thus away
from the poles a phenomenon closely resembling linear interference takes place, we call
it nonlinear interference. Since it is exactly the phenomenon of linear interference of
trigonometric functions that is responsible for the formation of wavepackets, the presence of
its nonlinear analogue should also lead to the formation of wavepackets, this time, however,
nonlinear. The simplest way of verifying whether it is actually so is to construct nonlinear
wavepackets. Due to the lack of a better method, in our choice of parameters we will be
guided by the analogy with the formula

∫
R[fs(λ) sin(λx−ω(λ)t)+fc(λ) cos(λx−ω(λ)t)] dλ

for construction of linear wavepackets.
Since4λk

pk
appears in (4d) and (4e) as an approximate amplitude of the oscillatory waves,

we assume that it is this quantity that provides a measure of relative contribution of each
wave in the wavepacket similar to the role played byfs(λ) andfc(λ) in the linear case.

Similar to the linear case, the simplest modulated wave is obtained by taking
superpositionu(t, x) of two harmonic breathers with close values ofλ1 andλ2. The graph of
suchu(t, x) along with(−p1+12λ2

Avet+x)u(t, x), λAve = (λ1+λ2)/2 is shown in figure 2.
Althoughu(t, x) decays to 0 as|t | or |x| → ∞, the graph of(−pAve+ 12λ2

Avet + x)u(t, x)
asymptotically becomes the same as a linearly modulated wavetrain as|t | or |x| → +∞.

A more localized wavepacket is constructed by taking sets

3 = (λ1, . . . , λN); 0 = (γ, . . . , γ ); P = (p1, . . . , pN);
pn = −p0ea(λn−λAve)

2; p0, a > 0.

Figure 2. Snapshots of the wavetrain generated by two harmonic breathers with0 =
(π/2, π/2 ); 3 = (6, 6.25); P = (−20,−20) (shown on the left-hand side) and of the same
wavetrain multiplied by(20+ 12λ2

avet + x), λave = 6.25 (shown on the right-hand side). For
both t = 0.
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Figure 3. Formation and time evolution of the wavepacket generated by 21 harmonic breathers
with 0 = (0, 0, . . . ,0); 3 = (λ1, λ2, . . . , λ20, λ21), λn = 1.5+0.05(n−1); P = (p1, . . . , p21),
pn = −100λne15(λn − 2)2. The value oft , corresponding to each frame, is shown in the upper
left corner of each frame.

Evolution of such wavepackets is shown in figure 3, and as we can see the wavepacket
is localized within the set1 = {t, x||t | < T, |x − 12λ2

Avet | < X}. In the example shown in
figure 3, constantsT = 1, X = 40, λAve = 2. As t → +∞ the wavepacket propagates to
the left and eventually disappears due to dispersion of the harmonic breathers compounding
it. Outside1 theN -harmonic breather solution does not necessarily vanish and localization
of the wavepacket within1 only may seem to be very restrictive. Analogy with the linear
case, however, tells us that by choosing sufficiently manyλk ’s within a sufficiently small
interval [λAve − 1λ, λAve + 1λ] we can make bothX and T as large as we wish, thus
creating a wavepacket with a life-span as large as we wish, localized on an interval also as
large as we wish. At the moment we cannot prove this analytically, yet formulae (3) have
been used to verify it numerically.

Figures 4–7 show time evolution of the superpositions of harmonic breathers with



5122 M Kovalyov

Figure 3. (Continued)

uniformly distributed values ofλ, the same value ofγ and pn of the form p0n
2, p0n

or p0, chosen to mimic theδ-function and its derivatives and antiderivatives. Note that for
t = 0 figure 6 shows a large negative splash asx → 0− and a large positive splash as
x → 0+, whereas figure 7 shows two large negative troughs on both sides of the peak in
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Figure 4. Formation and time evolution of the wave generated by 28 harmonic breathers with
0 = (0, 0, . . . ,0, 0); 3 = (λ1, λ2, . . . , λ28), λn = 0.5n; P = (p1, p2, . . . , p28), pn = −20n2.
The value oft , corresponding to each frame, is shown in the upper left corner of each frame.

the neighbourhood ofx = 0. Both the splashes in figure 6 and the troughs in figure 7 are
nonlinear analogues of the Gibbs phenomenon.

Of special interest are profiles of the type shown in figure 7, which are soliton-like with
a very short life-span. Given the fact that all numerical schemes for (1) are designed for
finite intervals only, profiles of figure 7 give an example of initial data that seem to have
a soliton in it whereas no soliton is actually present. The difference between the profiles
of figure 7 and solitons is actually much deeper than it may seem. Whereas a one-soliton
potential has a spectrum that consists of a single point on the imaginary axis, the profiles
of figure 7 have no regular spectrum but, instead, have a discrete singular real spectrum
[13, 14]. Their behaviour is different for bothx → ±∞ and t → ±∞. Yet for any given
but finite interval |x| 6 X we can construct an exact solution of KdV like the one in
figure 7 whose initial profile is soliton-like on|x| 6 X. Although we are not aware of any
bibliography on the existence of such unstable soliton-like formation for the KdV equation,



5124 M Kovalyov

Figure 5. Formation and time evolution of the wave generated by 28 harmonic breathers
with 0 = (π/2, π/2, . . . , π/2); 3 = (λ1, λ2, . . . , λ28), λn = 0.5n; P = (p1, p2, . . . , p28),
pn = 20n2. The value oft , corresponding to each frame, is shown in the upper left corner of
each frame.

there is a rather extensive description of such solutions for the generalized KdV, the best
reference for this, in our opinion, is [2]. The graphs of [2] clearly indicate that certain
solutions of the generalized KdV equation disperse into simpler ei(λx−ω(λ)t)-like components
similarly to the dispersion taking place for the profiles of figure 7, time evolution of the
profiles in [2] and of the profiles of figure 7 are practically identical, and we conjecture
that both are essentially of the same nature. Time evolution of the profile of figure 7 is not
given in this paper but can be easily obtained using explicit formulae (3).

Using modulation we can also construct ‘generalized’ solutions of KdV. We illustrate it
using the following example. LetuλAve,1λ,N,P (x, t) denote the superposition ofN harmonic
breathers with

3 =
(
λn|λn = λAve−1λ

(
N

2
− n

))
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Figure 6. Formation and time evolution of the wave generated by 28 harmonic breathers with
0 = (0, 0, . . . ,0, 0); 3 = (λ1, λ2, . . . , λ28), λn = 0.5n; P = (p1, p2, . . . , p28), pn = −20n.
The value oft , corresponding to each frame, is shown in the upper left corner of each frame.

0 = (γn|γn = γ, 16 n 6 N) P = (pn|pn = pn(1λ))
of the type shown in figure 8. AsN →+∞, 1λ→ 0 andt = 0, the sequenceuλAve,1λ,N,P

converges to something resembling theδ-function, in the sense that its limit is{
0 x 6= x0

+∞ x = x0

where x0 is a point close to 0. It is interesting to remark that even though we take
nonlinear superpositions of harmonic breathers with local maxima atx = 0, the peaks
of the superpositions in figure 8 do not occur atx = 0 but atx = x0, wherex0 is a point
slightly left of zero. We cannot, however, say that the limit is theδ-function or any other
tempered distribution for it has to satisfy (1) but the portionuux of (1) is not defined in the
sense of distributions. It is only reasonable to say that the sequence determines a certain
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Figure 7. Formation and time evolution of the wave generated by 28 harmonic breathers with
0 = (−π/2,−π/2, . . . ,−π/2); 3 = (λ1, λ2, . . . , λ28), λn = 0.5n; P = (p1, p2, . . . , p28),
pn = −20n. The value oft , corresponding to each frame, is shown in the upper left corner of
each frame.

new ‘generalized’ solution of KdV whose initial profile is not a generalized function in the
classical Sobolev–Schwartz sense. At present there is no theory of such functions although
the theory of mnemofunctions discussed in [1] seems to come closest to what we may need.

Although the harmonic breathers were obtained by an appropriate degeneration of the
reflection coefficientr(k), we deliberately avoid any further discussion of scattering data and
conserved quantities. The reason for that is two-fold. On the one handr(k) is discontinuous
and equation (2) is singular, rendering methods currently used in the inverse scattering theory
inapplicable. On the other hand, the sets of parameters3 = (λ1, . . . , λN); 0 = (γ, . . . , γ );
P = (p1, . . . , pN)are determined by the behaviour ofu(t, x) on the interval of modulation
rather than onR, again rendering modern methods inapplicable.

The existence of nonlinear modulation, similar in many aspects to its linear namesake,
shows that the similarity between the Fourier transform and the inverse scattering theory
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Figure 8. Sequence ofN -harmonic breather solutions converging to aδ-type function.
0 = (−π/2, . . . ,−π/2); 3 = (λ1, λ2, . . . , λN ), λn = 1λn, 1 6 n 6 N ; P = (p1, . . . , pN ),
pn = −30n0.51λ−0.25, t = 0. The values ofN and1λ are shown on each frame.

is much deeper than currently believed. Solutions of the KdV equation are dispersive,
that is with time they break down into simpler components. In the case of anN -soliton
solution these components are solitons. In the solitonless case these simpler components
have never actually been determined. Moreover, in some applications these components are
simply assumed to be approximately sin(λx − ω(λ)t) and cos(λx − ω(λ)t) as is the case
in derivation of the KdV equation in [20] where the equation is derived under an implicit
assumption that its solutions are wavepackets formed by small perturbations of a linear
superposition of the trigonometric functions. Yet due to the nonlinearity of the KdV equation
the components cannot be trigonometric functions as is the case in the Fourier transform
formula. What we have actually shown in this paper is that in at least some cases the simple
components are harmonic breathers and with time the wavepackets disperse into them in
much the same way as solutions of linear equations disperse into trigonometric functions.
This opens up a possibility to provide nonlinear analogues of constructions currently existing
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in the theory of Fourier transform, for example, nonlinear uncertainty principle, nonlinear
creation/annihilation operators, modelling of particles as nonlinear wave/wavepackets, etc
[5].

Nonlinear modulation is not particular to the KdV equation only but should also occur for
other integrable systems [3, 4], for example, the nonlinear Schrödinger equation for which
it actually might be even more important due to its use in nonlinear optics [7, 8, 16, 21].
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